

Oracle post exploitation
techniques

László Tóth
donctl@gmail.com

Disclaimer

The views expressed in this presentation
are my own and not necessarily the views
of my current, past or future employers.

Content

• Introduction
• Everybody knows this so let's do it quickly
• DLL injection (Windows, Linux)
• Attack cryptographic functions in the

database (TDE, dbms_crypto, etc)
• Remote Job Scheduling

Introduction

• There are many well know techniques for
post exploitation

• This presentation will concentrate on own
research results
– DLL injection
– Transparent Database Encryption
– JOB scheduling
– Release of rorakit for PoC

Let's do it quickly
• The common steps

– Running commands at the operating system level
JAVA, dbms_scheduler, extproc etc.

– Access files
utl_file, dbms_lob, JAVA etc.

• Less common, but equally, if not more important
– Find THE SENSITIVE information in the database
– Non-DBA access can be enough (hey we want

the DATA)
• Rootkits (somebody saw them in the wild?)

Let's do it quickly

Let's do it quickly

Let's do it quickly

• Rootkits
– Alex Kornbust

• 1st generation: modify views, stored procedures
• 2nd generation: e.g. modify the Oracle binaries
• 3rd generation: modify the SGA

– David Litchfield:
• Load DLL
• Change the system user hash through an exploit

– Dennis Yurichev
• Replace *.o file in the Oracle libraries

ar -x $ORACLE_HOME/lib/libserver11.a kzia.o

Let's do it quickly

An Oracle database stores relatively high
number of passwords, depending on the
installed features and applications. For
example:

– EM passwords (Metalink, proxy,
MGMT_VIEW, dbsnmp)

– APEX
– Scheduler
– ...

Let's do it quickly

We are talking post exploitation here, so you
need the highest privilege

Let's do it quickly

Let's do it quickly

DLL injection

• On Windows we use the well known DLL
injection techniques

• On Linux we use ptrace calls to modify the
Oracle process to load our library and
redirect the given function calls

• The PoC works on 32bit only (64bit will
come)

DLL injection
• The Linux is more interesting here, because it is

not a common technique, on Windows even
malware apply the same technique

• I found one example sshf in phrack magazine 59
• Lot's of things changed since then in glibc
• It logged the pam calls and it can easily call the

real functions from the libraries. (I have only the
Oracle executable.)

DLL injection

• On Windows everything in DLLs
• On Linux the Oracle executable contains

almost everything

DLL injection

The injector shellcode, which will be written
at the beginning of the isalpha function

DLL injection

DLL injection

DLL injection

DLL injection
Oracle on Windows is
multithreaded

– It's enough to inject
only one process

– You have to define
from which module it
is called and which
module contains the
function. If it is called
from a different
module it won't be
redirected

Oracle on Linux is
multiprocess

– You have to inject all
processes

– Every call will be
redirected in the
injected process

DLL injection

In theory both problems can be solved
– On Linux the listener process forks an Oracle

process when somebody logs in, so we
should inject the listener process to detect the
creation of the new Oracle processes

– On Windows we can implement the hijack
with the same technique as on Linux

Maybe in a future version

Crypto

I concentrated on cryptography functions
– DBMS_OBFUSCATION_TOOLKIT
– DBMS_CRYPTO
– Lot's of crypto in the authentication
– Transparent Database Encryption
– Stored passwords in the database

Crypto
DBMS_OBFUSCATION_TOOLKIT DBMS_CRYPTO

DES 3DES MD5 MD5 SHA1MD4 DES 3DESAES

ZTCH ZTCEENC ZTCEDEC

ORACLE

orancrypt11g.dlloran11g.dll On windows it happens
through DLLs

On Linux these are
direct calls

Crypto

Based on: http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_crypto.htm

Crypto

TDE

• Transparent Database Encryption
introduced in 10g Rel 2

• It is part of the Advanced Security Option
• In 10g it can encrypt on a column basis
• In 11g it can encrypt on a tablespace basis

TDE

• The master key is stored in a wallet,
outside of the database

• TDE protects the data on the file system,
not in the database

• If the wallet is open, the data – according
to the access rights – can be accessed

TDE

ewallet.p12 MasterKey

OBJ# ... COLKLC

41414...

ENC$

TableKey

ORACLE

select enccol from secret;

ENCCOL

secret1

secret2

ENCCOL

34BD...

65AF...

2

1

3

4

5

TDE

ewallet.p12 MasterKey

ORACLE

1

Tablespace file

3

4

Block

select col from secret;

COL

secret1

secret2

2

5

Tablespace key

TDE

• Oracle handles blocks at the file level
• The table space key is at the second

block+0x310 (a block can have various
sizes)

Key length (2*8 bytes) Encrypted tablespace key

TDE

The IV is at the beginning of each block

Beginning of the block

IV: 830080195941200 0200000000

TDE
• Special thanks goes to Gergely Tóth who – as a

recreation activity – developed an Oracle wallet
dumper in java

• I did a little modification of the orablock tool from
David Litchfield's great cadfile toolset to work
with my examples

• Special thanks goes to Kurt Van Meerbeeck who
allowed me to use his excellent jDUDE tool to
test my results

TDE

TDE
Length of the column

IV (is there by default, but can
be omitted with “NO SALT”)

SHA1 hash for integrity

TDE

Remote Job Scheduling

• Introduced in 11g
• It allows to run jobs on machines where

there is no database installed
• You have to install the Scheduler Agent

from the Transparent Gateway disk

Remote Job Scheduling

How it works (Linux):
– There is the schagent java program that

accepts the connection from the network
– Schagent calls the jssu executable in the

$ORACLE_HOME/bin directory
– The result is sent back to the database

through XDB

Remote Job Scheduling

Security I.
– The network connection is protected with SSL

between the database and the agent
– Operating system user and password are

needed to run a job on the agent's machine
– To handle the previous, a new object type

called CREDENTIAL was introduced (access
can be managed inside the database!)

– The agent has to be registered into the
database

Remote Job Scheduling

JOB request to the schagent

Oracle XML Database

JOB results sent to XDB

From 11.2 it can be encrypted

Encrypted with SSL, the server
checks the client certificate

Remote Job Scheduling

Remote Job Scheduling

The registration happens only once at the
beginning, so I concentrated on other parts,
but just to show what is happening:

password_hash=HmacSHA1(password+nonce,
cert+password+currentTime+hostname)

trkey=SHA1(password+nonce+currentTime+hostname)
[1..16]

enc_key=AES(trkey, random generated key)

Remote Job Scheduling

Remote Job Scheduling

Remote Job Scheduling

Of course we can log it:
5465737431323334
Test1234

Remote Job Scheduling

Security II.
– Disabling functions

• DISABLE_PUT_FILE=FALSE
• DISABLE_GET_FILE=FALSE
• DISABLE_JOB_EXECUTION=FALSE

– Restriction of users
• DENY_USERS=root,administrator,guest
• ALLOW_USERS=

Remote Job Scheduling

if this is set to TRUE, only registered databases will be allowed to submit
jobs and the agent will only be able to register with database versions 11.2
or higher. This enforces a higher level of security including encryption of
job results.
SECURE_DATABASES_ONLY=TRUE

Any guess what will be the general practice?

Remote Job Scheduling
• So we can have the

username and
password (from a
hacked database)

• Can we send a request
to the agent?

GET / HTTP/1.1
Host: o11gr2c:1500
Source: o11gr2
Source-DB: ORCL
Source-Port: 16021
Action: RUN
Command: /tmp/test.sh
Job-Id: 74601
Job-Name: MYJOB
Job-Subname:
Job-Owner: SYS
Username: oracle
Password: Test1234
Domain:
Request-Id: 1017801477
Credential-Owner: SYS
Credential-Name: LABCRED
Connection: close

Remote Job Scheduling

• We can escalate our privileges to the
remote agent

• We can bruteforce a password remotely
(that is why the user restrictions are
important)

• Two other small notes
– There is a VERSION query
– It is worth to look closer at the jssu binary

Remote Job Scheduling

Remote Job Scheduling

I know this is just a joke :), but you have a working
su, so at least be careful who can run the jssu
binary (oinstall group by default)

Remote Job Scheduling

• The user who runs jobs should not have
access to su, sudo and the jssu binaries

• If he/she has, he/she can bypass the user
restrictions by calling the binaries through
a job

• The configuration of the agent should be
as restricted as possible

Remote Job Scheduling

Remote Job Scheduling

OK, but we are talking about post
exploitation and what if

SECURE_DATABASES_ONLY=TRUE

Remote Job Scheduling

Remote Job Scheduling

s

Questions

Summary
• Don't forget THE DATA is important
• We can easily log the crypto function of Oracle

databases
• It was shown how the TDE function can be

attacked or recovered
• We analyzed the security of the Remote Job

Scheduling feature

• http://www.soonerorlater.hu/
• http://blogs.conus.info/
• http://www.red-database-

security.com/wp/oracle_rootkits_2.0.pdf
• http://www.databasesecurity.com/oracle-

backdoors.ppt
• http://www.databasesecurity.com/dbsec/Locatin

g-Dropped-Objects.pdf
• http://www.codeproject.com/KB/threads/complet

einject.aspx

URLs

